важнейшее свойство
биологических мембран (БМ), заключающееся в их способности пропускать в клетку и из неё различные метаболиты (аминокислоты, сахара, ионы и т.п.). П. б. м. имеет большое значение для осморегуляции и поддержания постоянства состава клетки, её физико-химический
Гомеостаз; играет важную роль в генерации и проведении нервного импульса, в энергообеспечении клетки, сенсорных механизмах и др. процессах жизнедеятельности. П. б. м. обусловлена особенностями строения БМ, являющихся осмотическим барьером между клеткой и средой, и служит характерным примером единства и взаимосвязи между структурой и функцией на молекулярном уровне.
БМ проницаемы лишь для небольшого числа низкомолекулярных жирорастворимых веществ (глицерин, спирты, мочевина и др.). Такая
проницаемость (простая диффузия) играет сравнительно малую роль в процессах переноса веществ через мембраны. Более важные процессы переноса (транслокации) веществ через БМ происходят с участием специфических систем транспорта. Предполагают, что эти системы содержат мембранные переносчики (белки или липопротеиды) и, возможно, ряд др. компонентов, осуществляющих связанные с транспортом функции (например, рецепторные). Переносчик (или их система) связывает переносимое вещество (субстрат) и может перемещаться в мембране. Если переносчики неподвижно фиксированы в БМ, то считают, что в БМ существуют специфические для переносимого вещества поры или каналы (
рис. 1). Если переносчик связывается с субстратом путём невалентных взаимодействий (ионными, гидрофобными и др. силами), то такой процесс называется вторичной транслокацией; различают 3 её типа (
рис. 2): облегчённая диффузия (унипорт), котранспорт (симпорт) и противотранспорт (антипорт). Механизм облегчённой диффузии не зависит от переноса др. веществ в клетку или из клетки. Этим способом переносится, например, глюкоза в эритроциты. Котранспорт - совместный транспорт двух (или более) веществ в одном направлении. Так, транспорт глюкозы и аминокислот через слизистые оболочки тонкого кишечника сопряжён с транспортом ионов Na
+. Механизм противотранспорта подразумевает сопряжение переноса вещества в одном направлении с потоком др. вещества в противоположном направлении. Этим способом осуществляется противоположно направленный перенос ионов Na
+ и К
+ в нервных клетках (см.
Мембранная теория возбуждения).
Процессы сопряжённого транспорта (симпорт и антипорт) имеют большое значение в тех случаях, когда переносимое вещество движется против градиента концентрации (из области меньшей в область большей концентрации). Такой активный транспорт, в отличие от пассивного транспорта (по концентрационному градиенту), требует затрат энергии. Энергообеспечение активного транспорта достигается за счёт сопряжения вторичной транслокации с ферментативными реакциями разрыва или образования химических связей. При этом энергия химического превращения расходуется на поддержание осмотического потенциала или асимметрии по обе стороны мембраны.
Транспорт веществ через БМ, связанный с разрывом или образованием валентных связей, называется первичной транслокацией. Типичный пример такого процесса - работа "натриевого насоса" (См.
Натриевый насос), сопряжённая с химической реакцией гидролиза богатого энергией аденозинтрифосфата (АТФ), катализируемого ферментом аденозинтрифосфатазой. Гидролиз АТФ сопровождается переносом ионов Na
+ из клетки и поступлением в клетку ионов К
+; предполагают, что переносчиком ионов К
+ является свободный фермент, а ионов Na
+ - фосфорилированный фермент, образующийся в ходе гидролиза АТФ. До сих пор не удалось выделить переносчиков из БМ клеток животных. У бактерий четко доказано (главным образом генетическими методами) существование переносчиков - т. н. пермеаз (См.
Пермеазы), некоторые из них (например, М-белок - переносчик лактозы у кишечной палочки) выделены в чистом виде. Имеются данные, показывающие, что активный транспорт сахаров и аминокислот у бактерий сопряжён с окислением D-молочной комитеты. У некоторых бактерий обнаружено большое число "связывающих белков", которые, возможно, являются рецепторными компонентами соответствующих транспортных систем.
П. б. м. регулируется гормонами и др., биологически активными веществами. Так, некоторые стероидные гормоны, инсулин и др. увеличивают
проницаемость мембран эритроцитов, мышечных и жировых клеток. П. б. м. возбудимых клеток (например, нервных) зависит от особых веществ - медиаторов (См.
Медиаторы) (ацетилхолин и др.). На П. б. м. для ионов сильно влияют антибиотики (валиномицин, грамицидин, нонактин), а также некоторые синтетические полиэфиры. В исследованиях П. б. м. - одной из важнейших проблем молекулярной биологии (См.
Молекулярная биология)
- большое значение имеют модельные мембраны: липидные монослои, искусственные двухслойные мембраны, многослойные замкнутые мембраны (липосомы) и т.п. Для изучения П. б. м. широко применяются электро-химические, физические и химические методы. См. также
Биологические мембраны.
Лит.: Биологические мембраны, М., 1973; Гершанович В. Н., Биохимические и генетические основы переноса углеводов в бактериальную клетку, М., 1973; Никольский Н. Н. Трошин А. С., Транспорт Сахаров через клеточные мембраны, Л., 1973; Ташмухамедов Б. А., Гагельганс А. И., Активный транспорт ионов через биологические мембраны, Таш., 1973; Mitchell P., Translocations through natural membranes, "Advances in Enzymology and Related Areas of Molecular Biology", 1967, v. 29; Kaback Н. R., Transport, "Annual Review of Biochemistry", 1970, v. 39.
В. К. Антонов.
Рис. 1. Транспорт веществ через биологическую мембрану с участием переносчиков: S - субстракт; X, Y, a, b, c, d, e - переносчики; А - транспорт с участием одного переносчика, Б - транспорт с участием двух переносчиков, В - транспорт по специфическому каналу (поре).
Рис. 2. Механизмы вторичной транслокации: S и R - субстраты, Х - переносчик; А - унипорт, Б - симпорт, В - антипорт.